首页> 外文OA文献 >Bivariate Lagrange interpolation at the Padua points: the generating curve approach
【2h】

Bivariate Lagrange interpolation at the Padua points: the generating curve approach

机译:帕多瓦点的双变量拉格朗日插值:生成曲线方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We give a simple, geometric and explicit construction of bivariate interpolation at certain points in a square (called Padua points), givingcompact formulas for their fundamental Lagrange polynomials. We show that the associated norms of the interpolation operator, i.e., the Lebesgue constants, have minimal order of growth of O((log n)^2 ). To the best of our knowledge this is the first complete, explicit example of near optimal bivariate interpolation points.
机译:我们在正方形的某些点(称为帕多瓦点)上给出了简单,几何和明确的双变量插值构造,为其基本拉格朗日多项式给出了紧凑的公式。我们证明了插值算子的相关范数,即Lebesgue常数,具有O((log n)^ 2)的最小增长顺序。据我们所知,这是第一个完整的,明确的,近似最佳二元插值点的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号